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Abstract—With the growing number of patients suffering from 

upper limb hemiplegia, robot-assisted rehabilitation has 
attracted more and more attention. Compared to traditional 
face-to-face rehabilitation, telerehabilitation is an effective 
alternative with therapist-in-the-loop. Meanwhile, bilateral 
rehabilitation based on surface electromyography (sEMG) 
enables patients to train by themselves. Although numerous 
telerehabilitation or bilateral rehabilitation systems have been 
proposed, limited studies have addressed cloud communication 
and inter-subject variability. This paper proposes a home-based 
upper limb rehabilitation (HB-ULR) system utilizing cloud-based 
teleoperation and sEMG-based subject-independent bilateral 
control. In the cloud-based telerehabilitation (CBTR) subsystem, 
experiments with the master side in Beijing City (China) and the 
slave side deployed in three different cities are conducted 
through one cloud server. The slave side is controlled by the 
master side, while the contact force is transmitted back to the 
master side. In the sEMG-driven subject-independent bilateral 
rehabilitation (sEMG-SIBR) subsystem, continuous motion can 
be predicted by a model after transfer learning. The validity of 
transfer learning in solving inter-subject variability is verified by 
both offline and real-time experiments, with the prediction error 
kept within 10 ° . Therefore, the HB-ULR system integrating 
CBTR and sEMG-SIBR subsystems is built. It supports both 
routine tele-rehabilitation and daily self-training at home, 
offering significant potential for enhancing the recovery outcome. 
 
Index Terms—Home-based upper limb rehabilitation (HB-ULR); 
Cloud-based teleoperation; Surface electromyography (sEMG); 
Transfer learning; Continuous motion prediction 
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I. INTRODUCTION 
TROKE is a leading cause of hemiparesis, with 40–
60% resulting in motor deficits in one of the upper 
extremities [1]. Upper limb hemiplegia profoundly 

affects patients’ daily activities and significantly diminishes 
their quality of life. Timely and effective rehabilitation 
training can alleviate motor impairment and promote the 
recovery of motor function in the affected upper limb of 
hemiplegic patients [2]. Therefore, rehabilitation plays a 
crucial role in the recovery process of hemiplegic patients. 

However, rehabilitation care is typically a long-term process. 
On the one hand, it imposes significant psychological and 
financial burdens on patients’ families. On the other hand, the 
demand for stroke rehabilitation services is growing [3], as the 
increasing number of stroke survivors further intensifies the 
need for such services. Due to the lack of rehabilitation 
institutions and therapists, only a small number of stroke 
survivors can access professional rehabilitation services. In 
other words, traditional rehabilitation training brings a heavy 
burden on both families and healthcare systems. Robotic 
rehabilitation represents a promising approach to stroke 
rehabilitation [4]–[6]. Compared to conventional rehabilitation 
approaches, robotic systems offer substantial practical and cost-
effective benefits. They can quantitatively assess rehabilitation 
outcomes and provide training consistently and repetitively, 
thereby freeing therapists from repetitive and tedious work. 
Therefore, rehabilitation robots are anticipated to play an 
essential role in future rehabilitation treatment [7]–[9]. 

Compared to traditional rehabilitation training that requires 
face-to-face interaction with a therapist, robot-assisted 
telerehabilitation [9] integrates rehabilitation robots with 
information technology and transmits evaluation data to 
therapists over the internet. Therefore, treatment can be 
transferred from one specialized facility to patients’ homes 
under remote supervision by therapists. At the same time, it can 
reduce treatment costs, travel time to clinics, and the financial 
burden on patients. For post-stroke motor disabilities, Atashzar 
et al. [11] developed a haptics-enabled robotic 
neurorehabilitation system that incorporates a neural network-
based supervised training framework. However, the slave-side 
equipment is not portable, and its high cost hinders its 
application in home-based telerehabilitation. Yi Liu et al. [4] 
developed a telerehabilitation system for home-based training, 

S 

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3578857

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 22,2025 at 14:11:54 UTC from IEEE Xplore.  Restrictions apply. 



2 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
which was designed to enhance remote interaction between 
therapists and patients. However, its communication is 
restricted to a campus local area network (LAN). Based on 
motion tracking, Jing Bai et al. [12] proposed a cloud 
communication-based rehabilitation system for the upper limb. 
This system is based on virtual games, making it different from 
robot-assisted tele-rehabilitation systems. Yang et al. [13] 
presented a preliminary study based on cloud communication, 
focusing on interventional robots not rehabilitation robots. In 
this study, the combination of a haptic-enabled master device, 
cloud communication, and the exoskeleton device on the slave 
side is utilized in home-based upper limb telerehabilitation. 

Bilateral training is widely adopted as a rehabilitation 
protocol for post-stroke motor impairments [14]. Bilateral 
therapy is based on the mirroring principle, in which the 
affected limb mimics the movement of the intact limb. This 
approach aims to enhance voluntary control over the impaired 
limb through synchronized bilateral movements. The surface 
electromyography (sEMG)-driven bilateral training is achieved 
by decoding the motor intention of the healthy side to control 
the affected side [15]. As a non-invasive measurement of the 
electrical activity of a muscle contraction, the sEMG signal has 
been widely used in the recognition of motion intention for 
exoskeletons and prostheses [16]. Yi Liu et al. [6] presented a 
home-based bilateral rehabilitation system with sEMG-based 
real-time variable stiffness control. In this system, a 
musculoskeletal model of the upper limb was adopted to decode 
the motion intention from sEMG signals. Since individuals 
differ in physiological parameters, personalized modeling is 
required for each patient. Ziyi Yang et al. [17] proposed an 
sEMG-based bilateral rehabilitation system for upper limb 
motor recovery. They adopted a neural network to predict the 
motion intention and trained subject-specific models due to the 
inter-subject variability. He Li et al. [5] built a robot-assisted 
system using a Convolutional Neural Network-Long Short-
Term Memory (CNN-LSTM) architecture for subject-
independent estimation. Although CNN can learn transferable 
features, this method fails to fully address the influence of inter-
subject variability on motion intention prediction. Yassine 
Bouteraa et al. [18] designed and developed a new robotic 
system for upper limb rehabilitation, which integrates electrical 
stimulation into motor rehabilitation through robotic systems. 
This offers a complementary view to the use of sEMG in 
subject-independent bilateral control. In this study, transfer 
learning is further adopted to realize the subject-independent 
motion estimation, targeting the inter-subject variability. 

In this paper, the home-based upper limb rehabilitation (HB-
ULR) system based on cloud-based teleoperation and sEMG-
driven subject-independent bilateral training is presented. The 
system employs a gear-driven powered upper limb exoskeleton 
(GP-ULE) as the slave-side device. The HB-ULR system 
comprises the cloud-based telerehabilitation (CBTR) subsystem 
and the sEMG-based subject-independent bilateral rehabilitation 
(sEMG-SIBR) subsystem. In the CBTR subsystem, the control 
commands from the therapist side to the robot-assisted side, as 
well as the force feedback from the robot-assisted side to the 

therapist side, are transmitted through one cloud server. The 
therapist can remotely control the GP-ULE to drive the patients’ 
affected limb and perceive the interaction force between the 
affected side and the robot to adjust the rehabilitation intensity. 
In the sEMG-SIBR subsystem, the affected limb is driven by 
the exoskeleton robot, which is controlled by sEMG signals 
from the intact limb. Transfer learning is used to realize the 
subject-independent estimation of motion intention. By 
integrating the two subsystems, the overall HB-ULR system is 
developed to support both therapist-supervised telerehabilitation 
and patients’ self-rehabilitation training based on bilateral 
therapy. Thus, the regular telerehabilitation and daily home-
based self-rehabilitation are realized. Regular tele-rehabilitation 
supervised by therapists can offer professional guidance that 
enhances the effectiveness of patients’ home-based bilateral 
rehabilitation. The key innovations of this study lie in the 
development of a novel integrated rehabilitation system, as 
follows:  
(1) CBTR: Enables real-time remote operation with force 

feedback between therapists and patients, demonstrating 
the feasibility of long-distance telerehabilitation through 
cloud servers. This represents a novel application of cloud 
technology in the field of rehabilitation robotics, enabling 
scalable and accessible remote healthcare services.  

(2) sEMG-SIBR: Allows patients to perform autonomous 
rehabilitation exercises using sEMG signals from the 
unaffected limb. By combining a CNN-LSTM model with 
transfer learning, the system achieves cross-subject 
adaptability without requiring subject-specific calibration. 

The rest of the paper is organized as follows. Section II 
describes the involved methods, which include the overview of 
the proposed robotic system for home-based rehabilitation, the 
commercial equipment, the exoskeleton design and control, the 
CBTR, and the sEMG-SIBR using transfer learning. The 
introduction of the experiments in this study is described in 
Section III. In Section IV, the results and discussion are shown. 
Section V is the conclusion. 

II. METHODS 

A. Overview of the Proposed Robotic System for Home-based 
Rehabilitation 

Fig. 1 illustrates the overview architecture of the HB-ULR 
system, integrating the CBTR subsystem and the sEMG-SIBR 
subsystem. This system comprises the therapist side, the robot-
assisted limb side, and the intact limb side. The therapist side 
and the robot-assisted limb side constitute the therapist-in-the-
loop CBTR subsystem; the intact limb side and the robot-
assisted limb side form the sEMG-SIBR subsystem. In both 
the CBTR subsystem and the sEMG-SIBR subsystem, the GP-
ULE serves as the hardware platform for the affected side of 
patients. 

In the CBTR subsystem, one user (serves as a therapist) 
operates the master-side device, and another user (serves as a 
patient with upper limb hemiplegia) wears the GP-ULE in the 
slave side. The data transmission between the master side and 
the slave side is realized through a cloud server. The motion 
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control commands are transmitted from the therapist side to 
the robot-assisted side, while the contact force between the 
GP-ULE and the patient is fed back from the robot-assisted 
side to the therapist side in real time. In the sEMG-SIBR 
subsystem, the motor control of the affected side is realized by 
decoding the sEMG signal from the intact limb. The subject-
independent motion estimation based on sEMG is achieved 
using transfer learning to the pre-trained CNN-LSTM model. 
 

 
Fig. 1. The overview framework of the HB-ULTR system combining the 
CBTR platform and the sEMG-SIBR platform. 

B. Commercial Equipment 
The HD² High-Definition Haptic Device [19] (Quanser, 

Canada) is a high-fidelity robotic manipulator designed for 
haptic interaction with virtual or remote environments. Using 
seven high-resolution optical encoders, the operator’s motion 
can be tracked in six degrees of freedom (DoFs), i.e., three 
translational motions in Cartesian space and three rotational 
motions (i.e., roll, pitch, and yaw). The system is connected to 
a computer via Quanser’s superior hardware control board 
QID/QIDe and utilizes its Real-Time Control (QuaRC) 
software compatible with MATLAB/Simulink (2022b, 
MathWorks).  

The Myo armband (Thalmic Labs, Canada) is used for 
sEMG acquisition in this study. The armband comprises eight 
“medical-grade” stainless-steel sEMG sensors, which are held 
together through an expandable flex band. The band also 
comes with sizing clips that can be adjusted to ensure it fits 
the forearm properly. Equipped with a tiny Bluetooth adapter, 
the Myo Armband wirelessly transmits data to the computer, 
capable of acquiring sEMG signals at a sampling rate of 200 
Hz. 

JY901 module (WIT, China) integrates a high-precision 
gyroscope, accelerometer, and geomagnetic field sensor. It 
employs a high-performance microprocessor along with an 
advanced dynamic solution and a Kalman dynamic filtering 
algorithm to quickly solve the current real-time motion 
attitude of the module. It supports two types of digital 
interfaces: serial port and I2C. The output rate is adjustable 
from 0.2 to 200Hz.  

The CYMH-1 (ChengYing, China) is a micro planar 
weighting sensor for applications requiring minimal space. 
Compared to thin-film resistor-based sensors, the CYMH-1 
provides enhanced stability. It collects analog signals that can 
be sampled by the microcontroller. 

C. Exoskeleton Design and Control 
Fig. 2 shows the diagram of the GP-ULE device. The 

mechanical structure of the GP-ULE comprises four main 
components: shoulder, upper arm, forearm, and motor base. 
There is one active DoF at the elbow joint and two passive 
DoFs at the shoulder joint. The GP-ULE device is attached to 
the user’s body using two adjustable fabric straps. The elbow 
joint rotation is realized through a brushless motor (Maxon EC 
22), which is coupled with a planetary gearhead (Maxon GP 
22 HP) and an incremental encoder (Maxon MR M-512). A 
specialized servo controller (ESCON 50/5, Maxon) is used to 
control the motor. 

 
 
 

Fig. 2. The illustration of GP-ULE. 
 

 
Fig. 3. The embedded system of the GP-ULE device. 

 
The embedded system includes high-level and low-level 

control, as shown in Fig. 3. The high-level control is 
implemented in MATLAB/Simulink. It handles tasks such as 
HD2 angle acquisition, transmission in telerehabilitation, and 
the sEMG-based prediction in bilateral rehabilitation. Data 
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 from MATLAB is transmitted to the microcontroller at 
115200 bps via a serial port. The low-level controller includes 
an outer-loop controller (that is, the position controller) and an 
inner-loop controller (that is, the velocity controller), which is 
realized in Arduino Mega 2560. The outer controller is based 
on the tracking error between the angles of the healthy side 
and the motor. A reference velocity for the inner loop is 
created through the built-in Hall sensor of the servo motor. 

D. Cloud Communication-based Telerehabilitation 
This section introduces the CBTR subsystem of the HB-

ULR system, as illustrated in Fig. 4. Fig. 4 (b) and Fig. 4 (c) 
depict the experimental setup. One subject (as a therapist) 
manipulates the HD2 to remotely deliver rehabilitation 
treatment to another subject (as a patient) wearing the GP-
ULE. The therapist can also perceive the interaction force 
between the affected limb and the robot in real time. Fig. 4 (a) 
and Fig. 4 (d) show the communication module of the master 
side and the slave side in Simulink. The feasibility of cloud-
based teleoperation and cross-LAN communication is 
analyzed.  
1) Feasibility of Cloud-based Teleoperation 

In the CBTR subsystem, the data transmission method 
should be determined first, followed by an evaluation of time 
delay and transmission error. In the data transmission process, 
the master-side controller (HD2) captures the therapist’s 
motion angles, which are then transmitted to the slave side via 
a cloud server. Once the slave side interprets the data, the GP-
ULE executes corresponding movements. Simultaneously, the 
contact force between the GP-ULE and the affected limb is 
fed back from the master side to the slave side. 

According to signal transmission mode, communication 
systems can be categorized into wired and wireless 
communication systems. Wired communication includes 
technologies such as Ethernet cables and fiber-optic 
connections, while wireless communication encompasses Wi-
Fi, Bluetooth, mobile communication systems, etc. In our 
study, the long-distance telerehabilitation training requires 
stable and uninterrupted signals, making Ethernet the 
preferred choice for data communication.  

Since the HD² operates within the MATLAB/Simulink 

environment, the tele-rehabilitation system involved in this 
study is also implemented in the MATLAB/Simulink 
operating environment. Given the requirements for connection 
stability and implementation complexity, the signal 
transmission of the cloud-based teleoperation employs a 
socket communication mechanism using the TCP protocol. A 
socket is defined by an IP address and a port number, uniquely 
identifying each separate data stream. Ali Cloud is chosen as 
the cloud platform with a configuration of 2 cores and 2 GB 
memory, a bandwidth of 3 Mbps, and the Windows Server 
2012 R2 operating system. 
2) Cross-LAN Communication based on a Cloud Server 
a) TCP Intranet Penetration 

Both the master PC and slave PC typically use intranet IP 
addresses. Consequently, intranet penetration is necessary 
between the cloud server and the master PC. The core concept 
of intranet penetration involves “mapping” and “forwarding”. 
The port of an intranet device is mapped to the port of a public 
network device for traffic forwarding. 

Fast Reverse Proxy (FRP) is adopted in this study to 
implement intranet penetration. FRP is a high-performance 
reverse proxy application that enables penetration of internal 
network easily, providing services to the external network and 
supporting protocols such as TCP, HTTP, and HTTPS. The 
principle behind this tool involves establishing a connection 
between a terminal on the external network and one requiring 
intranet penetration. It then forwards the services from the 
intranet terminal to the external network terminal. 
b) GNSS Clock Synchronization 

To accurately measure the communication delay between the 
master side and the slave side, precise clock synchronization is 
required. Commonly used methods for clock synchronization 
include Network Time Protocol (NTP) and Global Navigation 
Satellite System (GNSS). The NTP protocol can achieve an 
accuracy of approximately 1 ms within a local area network 
(LAN), but only around 50–500 ms over a wide area network 
(WAN). Therefore, NTP is insufficient for achieving 
millisecond-level synchronization in cloud-based teleoperation 
systems. Therefore, GNSS is used to synchronize the clock of 
the master PC and the slave PC.  

The USB GPS Receiver UB-353 (Chipset: M8030-KT, U-

 
Fig. 4. The experimental setup and overall communication module. (a) master communication module in Simulink (b) master side’s 

experimental setup (c) slave side’s experimental setup (d) slave communication module in Simulink. 
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blox, Switzerland) is adopted in this study. The GPS Receiver 
follows the NMEA-0183 standard protocol. It features a 
compact, self-contained, and waterproof design with a non-
slip base for secure placement. The GPS Receiver generates a 
Pulse Per Second (PPS), where the rising edge precisely marks 
the beginning of each UTC second. This PPS signal offers an 
accuracy of tens of nanoseconds without any cumulative error.  

Both the master and slave PC are connected to individual 
GPS receivers, allowing each system to obtain highly accurate 
time stamps and ensuring mutual synchronization. The u-
center is a GNSS evaluation software designed for U-blox M8, 
M9, F9, and legacy GNSS products. It is used for the basic 
configuration of the GPS Receiver. NMEATime (VisualGPS, 
LLC, USA) automatically synchronizes the PC clock with the 
time provided by a GPS receiver connected via the serial port, 
enabling the PC to remain synchronized to an atomic time 
standard. 
c) Establishment of Communication Channel 

Based on the TCP-based intranet penetration and the GNSS 
clock synchronization, the communication model is built in 
Simulink, as shown in Fig. 4 (a) and Fig. 4 (d). This Simulink 
model includes the master and slave components. On the 
master side, the communication module employs the “Stream 
Server” module from QuaRC, while the slave side utilizes the 
“TCP Client” module. Timestamps are added on both sides to 
calculate the communication delay between the master PC and 
the slave PC. On the slave PC, the “MATLAB function” 
module is adopted to retrieve the system time, while the 
master PC employs the “Data/time” block from QuaRC for the 
same purpose. 

E. sEMG-driven Subject-independent Bilateral Training using 
Transfer Learning 

This section introduces the sEMG-SIBR subsystem of the 
HB-ULR system, as shown in Fig. 5. The intact limb drives 
the affected limb assisted by the GP-ULE to carry out 
symmetric bilateral movements. The following describes the 
specific processes, including the acquisition of sEMG signals, 
signal preprocessing, and the subject-independent prediction 
of continuous movements. The transferred model based on 
pretrained CNN-LSTM is used for subject-independent 
estimation of continuous motion. 

 

 
Fig. 5. The overall flow chart of the sEMG-SIBR system. 

 
1) sEMG Acquisition 

This study involved 10 subjects (marked as S1-S10), 

including 5 males and 5 females, with an average age of 25.4 
years. All participants are right-handed and free of skeletal 
and neurological diseases. All participants gave their 
permission to be part of this study. All experimental 
procedures follow the Declaration of Helsinki on Medical 
Research involving Human Subjects. The offline sEMG data 
were acquired through the Myo armband. The JY901 was 
attached to the forearm to record motion angles, which serve 
as the target values. The sampling frequency is set to 20 Hz. 

Each volunteer wore the MYO armband and IMU on the left 
arm, ensuring that the 5th or 6th channels of the armband cover 
the corresponding area of the biceps, as shown in Fig. 5. Then, 
continuous elbow flexion-extension movements are 
performed. Each collection lasted 60 seconds, and a total of 
five trials were conducted per subject. After each collection, 
participants returned to a relaxed state. To avoid muscle 
fatigue affecting the signal quality, a 2-minute rest period was 
given between each collection. 
2) Signal Preprocessing 

Since raw sEMG signals are often interfered with noise, the 
preprocessing of the offline data is necessary. A 20 Hz high-
pass filter is used to eliminate the low-frequency noise. Due to 
the non-stationary nature of sEMG signals, a sliding window 
approach is adopted to maintain signal stability. Fig. 6 
illustrates the schematic diagram of the time window 
segmentation process. The sliding window is 250 ms with an 
overlap of 200 ms, satisfying the <300 ms latency requirement 
for real-time control [22]. To align the sampling points 
between the Myo armband and JY901 sensor, the angles 
obtained through the JY901 sensor are also segmented into 
250-ms windows with an overlapping of 200 ms.  

 

 
Fig. 6. The conversion of sEMG signals to sEMG images via an 
overlapping sliding window. S(a,b) represents the ath segment of the 
sEMG signal from the bth channel. Sa represents the ath segment of 
sEMG signals from all 8 channels. 
 
3) Subject-independent Continuous Angle Prediction 

Unlike traditional shallow neural networks, which rely on 
artificially extracted features, a deep neural network can 
transform the feature representation into a new feature space 
via layer-by-layer feature transformation. CNN can be adopted 
to realize the feature extraction and estimation of motion 
intention. Given that sEMG signals are time-related, LSTM 
combined with CNN to extract features is more effective, that 
is, CNN-LSTM. This model is used to estimate the continuous 
movements of the elbow joint. Based on the pre-trained CNN- 
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LSTM model, transfer learning is further combined to realize 
the subject-independent estimation of continuous motion. 

The sEMG-SIBR system includes three phases: offline 
training, transfer learning, and real-time intention estimation, 
as illustrated in Fig. 7. All three stages involve preprocessing, 
window segmentation, and sEMG image conversion. Transfer 
learning is conducted based on the pre-trained CNN-LSTM 
model from the offline training phase. Specifically, it utilizes 
1-minute data from a new user to fine-tune the model, and 
finally, the real-time intention estimation is carried out based 
on the model after transfer learning. 
 

 
Fig. 7. The three phases in the sEMG-SIBR system. (a) offline training 
phase (b) transfer learning phase (c) real-time intention estimation 
phase. 
 
a) Offline Training: The offline training (Fig. 7a) is based on 
previously collected sEMG data. Specifically, data from 
subjects S1–S7 are used for training, while data from subjects 
S8–S10 are reserved for testing. The structure of CNN-LSTM 
is shown in Fig. 8, with an input dimension of 50*8 
(corresponding to sEMG images) and a single output neuron 
representing the predicted motion angles. The input to the 
CNN-LSTM model is the sEMG images converted from 
sEMG signals via an overlapping sliding window approach. 
This model has 15 layers in total, including one convolutional 
layer, two LSTM layers, two fully-connected layers, and one 
regression output layer.  
 

 
Fig. 8. The layer illustration of the CNN-LSTM model. 

 
During training, the dataset is randomly divided into a 

training set (70%) and a validation set (30%). The Adam 
optimization algorithm is employed for network training, 
known for its adaptive learning rate adjustment, which 
accelerates convergence and performs well on high-
dimensional data. Specific settings include a maximum of 20 
epochs, with each batch containing 16 samples. The initial 

learning rate is set to 0.001, and a piecewise learning rate 
schedule is adopted to reduce the learning rate by a factor of 
0.8 every 20 epochs, enhancing training stability. To mitigate 
the risk of gradient explosion, a gradient clipping mechanism 
is applied with a threshold value of 1. Additionally, an L2 
regularization term with a coefficient of 0.001 is incorporated 
to improve model generalization. 
b) Transfer Learning: Transfer learning is a well-known 
topic in machine learning, commonly used to adapt models 
trained on one domain to new but related tasks or subjects. In 
this study, the widely adopted fine-tuning approach is 
employed to transfer knowledge from the pre-trained CNN-
LSTM model to a new subject. Specifically, the network 
architecture of the CNN-LSTM model remains unchanged 
during the transfer learning phase, ensuring consistency with 
the original model structure. To calibrate the model for a new 
subject, the initial weights are transferred from the pre-trained 
model and then fine-tuned using one-minute offline data 
collected from the new user. This efficient adaptation strategy 
enables the model to quickly adjust to the characteristics of the 
new subject while leveraging the previously learned features. 
The steps of the transfer learning are shown in Fig. 7(b). 
c) Real-time Intention Estimation: The real-time intention 
estimation is based on the fine-tuned CNN-LSTM model. In 
this stage, all procedures are performed in real-time, as shown 
in Fig. 7c. The predicted angles are obtained in real-time, and 
the whole estimation process corresponds to the high-level 
control realized in MATLAB. The estimation results are then 
transmitted to Arduino through serial communication, 
corresponding to the low-level control. Finally, the GP-ULE 
control can be realized in real time based on both the high-
level and low-level control loops. 

F. Evaluation Criteria 
In the evaluation of the telerehabilitation system, time delay 

and angle error are analyzed. Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), and Correlation Coefficient 
(R) are adopted to evaluate the angular tracking error. MAE 
(defined in (1)) is the average of all absolute errors between 
the target and true angles. RMSE (defined in (2)) is the 
standard deviation of the target and true angles. R (defined in 
(3)) is a number between -1 and 1 that indicates the correlation 
between the target and true angles. For the sEMG-SIBR 
subsystem, the criteria of MAE, RMSE, and R are also 
adopted to evaluate the prediction effect of continuous motion. 
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Where xi represents the master side’s motion angles at the 
ith data point, x

_

 is the average value, yi means the slave side’s 
motion angles at the ith data point, y

_

 is the average value, and 
N is the total number of data points. 
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III. SYSTEM EXPERIMENT DESCRIPTION 
The proposed HB-ULR system includes the CBTR and the 

sEMG-SIBR subsystem. These two sub-systems operate 
independently and support distinct rehabilitation modes: 
remote training and bilateral training. The therapist-in-the-
loop CBTR can provide professional training guidance that 
enhances the overall functionality of the HB-ULR framework. 
Therefore, both platforms are implemented and experimentally 
validated. The experiments are carried out for both platforms, 
respectively. The corresponding experimental setups are 
described below. 

A. Telerehabilitation based on Cloud Communication 
In the CBTR platform, the master side is located in Beijing 

City (China), while the slave side includes three regions: 
Beijing City (China), Shenzhen City (China), and Takamatsu 
City (Japan). A human operator (serves as a therapist) operates 
the handle of the HD2 haptic device (the therapist-side robot in 
the implemented CBTR platform). The motion signals are 
transmitted to the slave side through a cloud server, which 
controls the exoskeleton to assist the patient’s movement. 
Simultaneously, the contact force between the patient’s 
affected limb and the rehabilitation exoskeleton is fed back 
from the slave side to the master side. For each of the three 
slave positions, five-times experiments are performed per hour 
(from 7:00 am Beijing time to 8:00 pm Beijing time). Each 
experiment is conducted for 50 seconds, during which all 
relevant data are recorded. 

B. sEMG-based Subject-independent Bilateral Training 
The sEMG-SIBR platform is distinct from the cloud-based 

telerehabilitation platform. In this platform, the unaffected 
limb drives the affected limb through decoding sEMG signals, 

which is assisted by the GP-ULE to carry out symmetric 
movements. A regression model based on CNN-LSTM is 
trained using offline data. Subsequently, transfer learning 
adapts the model using a new user’s one-minute data. Finally, 
the motion intention of the intact limb, predicted by the 
transferred model, drives the GP-ULE to assist the movements 
of the affected limb. During both the offline and real-time 
phases, each participant performs continuous elbow flexion-
extension movements following the predefined sEMG 
acquisition protocol. 

IV. EXPERIMENTAL RESULTS 
This section presents the experimental results and 

performance analysis to evaluate the effectiveness of the 
proposed system. For the performance evaluation of the CBTR 
platform, the communication delay, the position tracking, and 
the contact force are analyzed in turn. For the prediction 
performance evaluation of the sEMG-SIBR platform, the 
results of the offline training and the real-time estimation are 
analyzed in turn. 

A. Performance Evaluation of the CBTR Subsystem 
As previously described, the CBTR platform enables 

therapists to provide direct kinesthetic guidance to patients 
with stroke. Additionally, the therapist can perceive the 
contact force generated during the interaction between the 
affected limb and the rehabilitation exoskeleton. Fig. 9(a)-(c) 
show the motion trajectories over time, with the slave side 
located in Beijing, Shenzhen, and Takamatsu, respectively. 
The blue line represents motion signals from the therapist side, 
while the orange line represents motion signals from the 
patient side. Fig. 9(d)-(f) shows the contact force. In this 
session, the performance of the CBTR platform is analyzed. 

 
Fig. 9. Motion angles and contact force of master side (in Beijing City) and slave side (a)(d) slave side in Beijing City (b)(e) slave side in 

Shenzhen City (c)(f) slave side in Takamatsu City.  
 

 
Fig. 10. Histogram of average delay of data transmission between master side and slave side. 
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Latency is a critical factor in the tele-rehabilitation process. 
It affects both the smoothness of user–therapist interactions 
and the overall quality of rehabilitation outcomes. First, in 
rehabilitation activities requiring immediate feedback, any 
noticeable delay can undermine this immediacy. As a result, 
users may struggle to adjust their movements based on the 
received feedback. This is especially relevant in systems using 
haptic feedback, where latency reduces the realism of the 
interaction and the system’s responsiveness, ultimately 
affecting user engagement and satisfaction. Second, from a 
perspective of rehabilitation effectiveness, latency can 
significantly reduce the accuracy and overall efficacy of the 
training process. The real-time correction of erroneous 
movements is a critical component of rehabilitation training. 
Delays can lead to delayed corrections, which may degrade 
the quality of rehabilitation even causing secondary injuries. 
Therefore, the performance of the CBTR is evaluated in terms 
of communication delay, master/slave position tracking, 
control delay, and contact force, as follows. 
1) Communication Delay 

To quantitatively analyze the communication delay between 
master side and slave side, the time delay of each experiment 
is visualized in Fig. 10. The figure displays histograms 
showing average value (AVE) and standard deviation (STD) 
of time delay recorded per hour (from 7:00 am Beijing time to 
8:00 pm Beijing time). As summarized in TABLE I, when the 
slave location is Beijing, the maximum time delay is 54.80 ms, 
the minimum time delay is 25.20 ms, and the average time 
delay is 38.43 ms. When the slave location is Shenzhen, the 
maximum time delay is 85.60 ms, the minimum time delay is 
53.80 ms, and the average time delay is 66.45 ms. When the 
slave location is Takamatsu, the maximum time delay is 
215.80 ms, the minimum time delay is 83.60 ms, the average 
time delay is 109.80 ms, and the time delay increases 
significantly after 6 pm (Beijing time). Whether the slave 
location is Beijing, Shenzhen, or Takamatsu, its 

communication delay meets the requirements, less than 300 
ms.  

 
TABLE I 

THE TIME DELAY OF DATA TRANSMISSION BETWEEN THE MASTER SIDE 
AND THE  SLAVE SIDE 

 Time Delay (ms) 
Beijing 

 

Shenzhen 

 

Takamatsu 
MIN 25.20  53.80  83.60 
MAX 54.80  85.60  215.80 
Ave 38.43  66.45  109.80 

 
The timestamp resolution from the Windows operating 

system is limited to a maximum of 10 or 15 ms, depending on 
the underlying hardware configuration. The master PC adopts 
QUARC to stabilize the clock frequency and achieve a 
timestamp accuracy of 1 ms. However, the slave PC has a 
timestamp accuracy of 10 or 15 ms, leading to an approximate 
10 ms clock synchronization error between the master PC and 
the slave PC. 
2) Master-Slave Position Tracking 

In addition to communication delay, the master-slave 
position tracking precision is discussed in this section. 
Quantitative evaluation of the tracking error is performed 
using MAE, RMSE, and R, as illustrated in Fig. 11(a)–(c), 
which present the histograms of tracking error. As 
summarized in TABLE II, the tracking performance between 
the master side and the slave side is recorded. Using MAE as 
an example, the tracking error for the three different slave 
locations is analyzed. For the slave in Beijing, the tracking 
error ranges from 0.6782° to 1.4294°, with an average of 
0.9989°. For the slave in Shenzhen, the tracking error ranges 
from 1.3323° to 2.0685°, with an average of 1.6421°. For the 
slave in Takamatsu, the tracking error ranges from 1.9518° to 
4.9508°, with an average of 2.5958°. Lower values of MAE 
and RMSE indicate better tracking performance, while higher 
values of R reflect stronger correlation between the master and 
slave movements. 
 

 
Fig. 11. Histogram of tracking effect between master side and slave side. (a)MAE (b)RMSE (c)R. 
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TABLE II 
THE TRACKING EFFECT BETWEEN MASTER SIDE AND SLAVE SIDE 

Index  Beijing  Shenzhen  Takamatsu 

MAE 
MIN 0.6782  1.3323  1.9518  
MAX 1.4294  2.0685  4.9508  
Ave 0.9989  1.6421  2.5958  

RMSE 
MIN 0.8404  1.4745  2.4317  
MAX 1.7702  2.5673  6.1050  
Ave 1.7702 1.9556  3.2277  

R 
MIN 0.9989  0.9978  0.9878  
MAX 0.9998  0.9990  0.9981  
Ave 0.9994  0.9985  0.9963  

 
3) Control Delay 

In the therapist-in-the-loop tele-rehabilitation system, the 
entire control process begins with the master PC transmitting 
commands to the slave PC. The slave PC then transmits these 
commands to the lower-level controller via a serial port. The 
lower-level controller executes the commands by driving the 
motors, which activate the exoskeleton to assist the patient's 
limb movement and provide force feedback. The force 
feedback is collected by the lower-level controller and sent 
back to the slave PC via the serial port, and subsequently 
transmitted to the master PC, enabling therapists to perceive 
the interaction force in real time. The communication delay 
between the master PC and the slave PC is analyzed in the 
“Communication Delay” subsection. Accordingly, this 
subsection focuses on the serial port communication delay and 
the control delay associated with executing commands and 
providing haptic feedback. 

 

 
Fig. 12.  Motion angles between Client PC and lower-level controller (a) 
motion angles (b) partial zoom 
 

TABLE III 
THE TIME DELAY BETWEEN THE CLIENT PC AND MICROCONTROLLER 

 Delay of motor 
control and serial 
transmission (ms) 

Delay of serial 
transmission (ms) 

Delay of 
motor control 
(ms) 

1st 226 17 209 
2nd 205 16 189 
3rd 213 18 195 
4th 223 19 204 
5th 198 18 180 
Ave 213.0 17.6 195.4 
 

Fig. 12 shows the motion angles between the slave PC and 
the microcontroller. The blue line represents the command 
signal received from the master PC, the red line represents 
the client signal received from the microcontroller, and the 
orange line represents the motor angle recorded by the slave 
PC. Both the total delay (including motor control and serial 
transmission) and the serial transmission delay are recorded. 
Thus, the delay of motion control can be calculated, as 

summarized in Table III. The average delay of serial 
transmission is 17.6 ms, while the average delay of motor 
control is 198.6 ms. Given that the communication delays 
across the three locations range from 30 to 100 ms, the total 
system delay remains below 300 ms [22]. 
4) Contact Force 

Fig. 9(d)-(f) show the contact force between the patient’s 
affected limb and the rehabilitation exoskeleton. This force is 
transmitted to the master side through a cloud server, allowing 
therapists to intuitively perceive it through the handle of HD2. 
The magnitude of the interaction force reflects the severity of 
hemiplegia and typically decreases as rehabilitation progresses.  

Here, a comparative experiment is performed to assess 
differences in interaction forces. Experiment one was 
conducted on patients with complete hemiplegia (normal 
people simulate this condition without voluntary movements 
at all). Experiment two was conducted on normal people. The 
results, shown in Fig. 13, clearly demonstrate the difference in 
the magnitude of the interaction force in the two situations. 
Therefore, through the feedback of this force, therapists can 
assess the severity of hemiplegia during the telerehabilitation 
process. Furthermore, therapists can provide guidance for 
patients to perform sEMG-SIBR independently at home. 
 

 
Fig. 13 Comparison of the contract force. (a) Without voluntary motion 

(b) With voluntary motion  

B. Prediction Performance of the sEMG-SIBR 
Based on the proposed sEMG-SIBR platform, the affected 

side of the patient is driven by the GP-ULE, which is 
controlled using sEMG signals from the patient’s intact limb. 
The accuracy of sEMG decoding directly affects the outcome 
of bilateral rehabilitation. This section presents the analysis of 
the CNN-LSTM regression model with and without transfer 
learning under both offline and real-time situations. The 
estimation results obtained with and without transfer learning 
in offline situations are compared. Quantitative assessments 
are performed using the metrics MAE, RMSE, and R. 
1) Offline Training and Estimation 

For all 10 subjects (S1–S10), data from the first seven (S1–
SS7) are used for model training, while data from the 
remaining three (S8-S10) serve as the additional test set. The 
quantitative evaluation results obtained with and without 
transfer learning are recorded in Table IV. Fig. 14 shows the 
offline angle estimation results with and without transfer 
learning. Fig. 14(a)-(c) present the offline angle prediction 
results for subjects S8-S10, respectively. These figures 
highlight the differences in prediction performance across 
subjects S8–S10. Fig. 14(a)–(c) demonstrate the inter-subject 
variability. For subject S8, the estimation performance without 
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transfer learning is the lowest. For subject S9, the prediction 
performance without transfer learning is moderate. For subject 
S10, the prediction performance without transfer learning is 
the highest. Regardless of subjects (S8–S10), the prediction 
performance is improved through the CNN-LSTM model with 
transfer learning. The transferred model consistently improves 
prediction accuracy, demonstrating its effectiveness in 
addressing inter-subject variability. 
 

 
Fig. 14. The offline angle estimation with and without transfer learning. 
(a) subject S8 (b) subject S9 (c) subject S10. 
 
2) Real-time Estimation of Motion Angle 

Based on the offline training and prediction, the CNN-
LSTM model after transfer learning is applied to real-time 
estimation. Fig. 15(a)–(c) presents the real-time motion angle 
estimation results from three separate experiments. The black 

line represents the IMU-measured motion angles, while the 
green line represents the model-predicted angles using the 
transfer-learned CNN-LSTM model. In contrast to the offline 
phase, real-time prediction requires additional evaluation of 
time delay, along with MAE, RMSE, and R, as summarized in 
Table V. The time delays between the angles from the attitude 
sensor and the estimated angles are 50 ms, 0 ms, and 0 ms 
across the three trials, indicating minimal overall latency. This 
low latency can be attributed to the fact that sEMG signals 
typically occur 30–150 ms prior to actual movement onset. 
Additionally, the utilization of sliding windowing and filtering 
techniques introduces a predictive bias in the signal 
processing, effectively giving the model a forward-looking 
tendency. The MAE remains below 8°, and the RMSE stays 
within 10°, demonstrating the effectiveness of the model in 
suppressing the inter-subject variability. 
 

TABLE V 
THE QUANTITATIVE EVALUATION OF THE REAL-TIME ANGLE ESTIMATION 

Times Index Value 

1st 

Time Delay 50 (ms) 
RMSE 9.6512 (°) 
MAE 7.2879 (°) 
R 0.9659 

2nd 

Time Delay 0 (ms) 
RMSE 10.3943 (°) 
MAE 7.3983 (°) 
R 0.9608 

3rd 

Time Delay 0 (ms) 
RMSE 7.9008 (°) 
MAE 6.1086 (°) 
R 0.9767 

V. DISCUSSION 
As shown in Table VI, the proposed rehabilitation system 

offers several advantages over existing systems: Firstly, the 
use of WAN enables broader coverage and higher data
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TABLE IV 
THE QUANTITATIVE EVALUATION WITH AND WITHOUT TRANSFER LEARNING 

Subject Index 1st time  

 

2nd time  

 

3rd time  
Without TL With TL Without TL TL Without TL TL 

S8 
MAE 12.8540 6.7763 10.3138 6.8981 13.1963 9.3246 
RMSE 15.1952 9.1089 13.5687 9.0546 15.1348 12.0140 
R 0.9250 0.9754 0.9128 0.9612 0.9299 0.9558 

S9 
MAE 13.0131 7.0417 8.2149 7.3154 9.8323 5.7868 
RMSE 15.3746 9.4837 10.8444 9.0253 11.9224 7.7910 
R 0.9274 0.9724 0.9545 0.9685 0.9513 0.9792 

S10 
MAE 11.3080 8.1728 7.5937 5.6038 12.2877 9.6573 
RMSE 15.2089 11.2321 10.3448 7.0407 16.4640 12.1203 
R 0.9347 0.9644 0.9559 0.9796 0.8811 0.9355 

 

 
Fig. 15. The results of the real-time estimation of motion angles. (a) the results of the 1st time experiment (b) the results of the 2nd time 

experiment (c) the results of the 3rd time experiment. 
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 transmission capacity compared to LANs or Bluetooth-
based solutions. Secondly, the home-based nature of the 
system makes it suitable for deployment in home-based 
environments, significantly improving user convenience and 
accessibility. Additionally, the integration of haptic feedback 
plays a crucial role in enhancing user engagement and 
providing a more immersive rehabilitation experience. 
Finally, as an sEMG-driven system, it operates based on 
sEMG signals without requiring individualized calibration, 
thereby enhancing its generalizability and ease of use. 

The above offline and online experiments verify the 
effectiveness of the subject-independent prediction using 
transfer learning. The performance of the proposed method 
with existing approaches is further presented. Compared to 
previous studies focused on estimating continuous elbow joint 
movements, this study addresses both the requirements of HB-
ULR and subject-independent prediction. The comparison 
results of different methods are presented in Table VI. 
Compared to other methods, the proposed approach achieves 
the lowest RMSE (9.2666) and the highest R (0.9679), 
suggesting that transfer learning is effective in solving the 
inter-subject variability of sEMG signals.  
 

TABLE VI 
THE PREDICTION COMPARISON WITH OTHER STUDIES 

 RMSE R 
Yang et al. [17] 20.4400 0.8940 
Zhao et al. [22] 17.5900 0.9100 
Ding et al. [23] 13.2209 0.8400 
Li et al. [5] 15.2596 0.9290 
This Study 9.2666 0.9679 

 
In summary, this study demonstrates that the tele-

rehabilitation system can provide low-latency and stable 
communication services across various regions, while the 
transferred CNN-LSTM prediction model can effectively 
deal with inter-subject variability. By integrating tele-
training and bilateral training, a home-based rehabilitation 
system is constructed. Looking ahead, future research could 
focus on further optimizing the communication network to 
enhance the system’s adaptability in diverse environments. 
This includes exploring edge computing solutions to reduce 
latency, implementing more robust data transmission 
protocols to ensure reliability in areas with unstable 
connectivity, and leveraging 5G or next-generation wireless 
technologies for improved bandwidth and coverage. 

VI. CONCLUSION 
In this paper, a HB-ULR system based on cloud-based 

teleoperation and sEMG-driven subject-independent bilateral 

training is built. The CBTR subsystem implements master–
slave control through cloud-based communication. The HD2 
device, operated by the therapist, serves as the master side, 
while the GP-ULE worn on the hemiplegic patient acts as the 
slave side. The sEMG-SIBR subsystem enables subject-
independent motion estimation of the elbow joint using the 
transferred CNN-LSTM model. The effectiveness of the 
overall rehabilitation system is verified through experiments 
involving both subsystems, highlighting its potential for 
home-based rehabilitation applications.  
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